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Stochastic Flows, Reaction-Diffusion Processes, 
and Morphogenesis 
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Philip A. Politowicz, l and Cecilia A. Waish I 

Recently, an exact procedure has been introduced [C. A. Walsh and J. J. Kozak, 
Phys. Rev. Lett. 47:1500 (1981)] for calculating the expected walk length (n )  for 
a walker undergoing random displacements on a finite or infinite (periodic) 
d-dimensional lattice with traps (reactive sites). The method (which is based on a 
classification of the symmetry of the sites surrounding the central deep trap and 
a coding of the fate of the random walker as it encounters a site of given 
symmetry) is applied here to several problems in lattice statistics for each of 
which exact results are presented. First, we assess the importance of lattice 
geometry in influencing the efficiency of reaction-diffusion processes in simple 
and multiple trap systems by reporting values of ( n )  for square (cubic) versus 
hexagonal lattices in d = 2, 3. We then show how the method may be applied to 
variable-step (distance-dependent) walks for a single walker on a given lattice 
and also demonstrate the calculation of the expected walk length (n )  for the 
case of multiple walkers. Finally, we make contact with recent discussions of 
"mixing" by showing that the degree of chaos associated with flows in certain 
lattice systems can be calibrated by monitoring the lattice walks induced by the 
Poincar~ map of a certain parabolic function. 

KEY WORDS: Reversible/irreversible reactions; effects of dimensionali- 
ty/spatial extent; chaos. 

1. INTRODUCTION 

To study reaction-diffusion processes in homogeneous vs. compartmental- 
ized media, we have developed recently a method for calculating exactly 
the expected walk length (n)  for random walks on d-dimensional lattices 
with traps. (~) Although at first sight it appeared that the algorithm intro- 
duced was chiefly of interest in obtaining numerical results on lattice 
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problems for which large-scale Monte Carlo calculations would be prohibi- 
tively expensive, a more detailed examination of the underlying mathemati- 
cal structure of the theory (2) revealed that the approach taken might itself 
serve as a fresh starting point for deriving analytic expressions for (n)  for a 
variety of random walk problems. The method proposed in Refs. 1 and 2 is 
based on a simple use of group theory to classify the site symmetry of the 
trapping/nontrapping lattice points and a subsquent, self-consistent coding 
of the fate of a random walker as it encounters a site of given symmetry. 
The algebraic structure which results upon organizing this information 
systematically lends itself naturally to analysis via methods of matrix 
transformation theory. It was demonstrated (2) that the inverse of the 
underlying transformation matrix leads at once to information on ( t / ) i  (the 
expected walk length from site i), on the fraction of probability space 
encountered by the random walker in a flight from site i to site j ,  and on 
the overall walk length (n). 

In the present talk, we shall illustrate the potential usefulness of the 
method as an analytic tool by (re)deriving two closed-form analytic results 
for walks on a linear chain with a centrosymmetric, deep trap (Section 2). 
Then, in Section 3, we demonstrate the versatility of the algorithm as a 
calculational tool by considering several examples: we focus on problems in 
reaction-diffusion theory for which exact analytic results are presently 
unavailable. These problems are, of course, accessible to quantitative study 
via the implementation of Monte Carlo simulation methods, and for each 
of the problems described in Section 3 we have performed complementary, 
Monte Carlo calculations to provide "experimental evidence" that the 
algorithm "works." As noted in our earlier report, (1) from the standpoint of 
machine time, there is no comparison between the times required to 
implement the algorithm (involving, as it does, nothing more than Cramer's 
rule) versus those required to perform the Monte Carlo simulations. For 
certain of the problems discussed, up to 20,000 walks initiated from each 
site of the underlying d-dimensional lattice are required to obtain good 
histograms and reliable estimates of (n). Since, then, for the same problem 
a Monte Carlo experiment may require several hours of c.p.u, time, 
whereas use of the algorithm requires only seconds to implement on the 
same machine, we believe the procedure introduced opens up the possibility 
of obtaining exact results on a wide variety of problems previously resistant 
to systematic study. 

2. ILLUSTRATION OF THE METHOD: ANALYTIC RESULTS 

Consider a linear chain of N sites consisting of a centrosymmetric deep 
trap (T) and ( N -  1) nontrapping (neutral) sites, with the d = 1 lattice 
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subject to periodic boundary conditions. Relative to the central trap, the 
symmetric disposition of the adjacent, nontrapping sites suggests the follow- 
ing coding: (N - 1)/2, (N - 3) /2 . . . . .  4, 3, 2, 1, T, 1, 2, 3, 4 . . . . .  (N - 3) 
/2,  (N - 1)/2�9 Suppose for definiteness the walker is situated at one of the 
two nontrapping sites denoted 1, and let (n}l represent the expected walk 
length for a walk originating from this site. There is one chance in two that 
the walker will move in a single step jump to a site labeled 2. Assuming 
this has been realized, the walker, after having landed on this new site, will 
have no memory of ever having been on the original site 1. Thus, in this 
Markovian scenario, the walker will continue his walk just as if he had 
started from the site 2, except that his walk length must be incremented by 
the one previously taken step�9 Taking into account both sites flanking the 
site labeled 1, together with the attendant probability p = 1/2 of a neigh- 
boring site being reached in a random displacement from site 1, one has the 
following relation: 

(n>l = �89 + 1) + 1(<n>2 + 1) 

Similar equations may be set down for each of the remaining (n}i and the 
resultant set of equations, comprising i = 1, 2 , . . . ,  ( N -  1)/2 equations in 
( N -  1)/2 unknowns may be organized in terms of the matrix representa- 
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It is evident that summing the elements of the first row of the inverse 
matrix A - i  yields (n) l  = [(N - 1) /2]-2 = N - 1, a result which is consis- 
tent with the Montroll-Weiss result (3-5) that the expected walk length 
required to return to the origin (for a walk starting from the origin) is N. By 
inspection, ( n ) i  = i N  - i 2, and hence the overall expected walk length (n )  
may be computed at once: 

( n )  = 2 '~ '~Nl l ) / 2 (n ) i  = 1 - N ( N  + 1) 
N - 1  6 

the classic result of Montroll and Weiss. (3-5) If one considers the case of 
reflecting boundary conditions (implemented by the restriction that if the 
walker attempts to step on the boundary it is displaced to one (interior) 
lattice point further removed from the boundary than the lattice site from 
whence it started), only the elements comprising the last column of the 
matrix A - l  change, viz., the new column elements are (1 2 3 . . .  (N - 1) 
/2). The information in the consequent inverse matrix can be extracted as 
above, with the result that ( n ) i  = i N  - i ( i  + 1) and 

(n )  = + 1)(2N + 3) 

which is just the closed form analytic result found using standard generat- 
ing function techniques. (6) 

We have pointed out (2) that the matrix elements of A -  i satisfy a 
number of invariance relations (similar to the one noted above for periodic 
lattices, viz., @)1 = N -  1) which, when used in conjunction with scaling 
relations derived from a sequence of decimationlike transformations (in 
which neutral sites are replaced by traps), allow calculations on N site, 
d-dimensional lattices to be replaced by simpler calculations on N'  site 
lattices, where N'  < N. It is this procedure which is being exploited in our 
present work in the effort to obtain new analytic results in random walk 
theory. 

3. REACTION-DIFFUSION PROCESSES IN H O M O G E N E O U S  VS, 
C O M P A R T M E N T A L I Z E D  SYSTEMS 

Of the many reaction-diffusion processes that can be modeled by 
random walls on d-dimensional lattices, two will be considered here. 
Suppose that A is the diffusing molecule (the random waller) and B is the 
target molecule (the trap), the latter localized at a point in space. Then, the 
case T = 1 with the remaining ( N -  1) sites of the lattice nonabsorbing 
(nonreactive, neutral) corresponds to considering the strictly irreversible 
reaction: A + B--~ C. Or, generalizing this situation, suppose that due to 
"poisoning" (in the problem of catalyst deactivation) or unfavorable steric 
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or energetic constraints (in the chlorophyll antenna system), the ( N -  1) 
sites surrounding the central trap are also occupied by reactive species B, 
but that these have a reduced probability 0 < s i < 1 of reacting with the 
diffusing molecule A; in effect, then, we consider the reaction: A + B--~ 
[AB]* ~ C, where [AB]* may be thought of as an activated complex. 

In the reaction schemes described above, any number of factors may 
affect the efficiency of reaction, the latter monitored by the expected walk 
length (n). Among these factors are (1) the dimensionality and connectiv- 
ity of the lattice; (2) the spatial extent of the reaction space; (3) for 
compartmentalized systems (e.g., cells, micelles, vesicles), the nature of the 
boundary conditions; (4) the importance of background deactivation; and, 
(5) the possible bias on the motion of the diffusing species due to down- 
range potential interactions. All of these situations can be dealt with using 
the algorithm described in the previous section, and in Table I we record 
some representative results for d = 2. (Again, all numbers reported are the 
algorithm results; corroborative Monte Carlo simulations have been carried 
out to "check" the numbers and in all cases the agreement is better than 
0.3%.) 

Consider first the role of lattice connectivity in influencing the effi- 
ciency of reaction. The results for hexagonal lattices are always somewhat 
higher than those for square lattices; a lattice site on a hexagonal array has 
one fewer exit path than a lattice site on a square lattice, so a diffusing 
species has fewer channels to exploit in seeking the central trap. As 
documented in the % Diff [----((/'/)hex -- ( n ) s q ) / ( r / ) s q  X 100] column, there 
is an interesting interplay between lattice connectivity and the nature of the 
boundary conditions imposed on the lattice. Differences in (n)  calculated 
for square vs. hexagonal arrays are more pronounced for active (reflecting) 
than for passive (periodic/confining) boundary conditions. The "focusing 
effect" induced by reflecting boundary conditions is most clearly displayed 
for the case si = 0. The most striking feature of the remaining results listed 
in Table I, i.e., those for nonzero s;, is the extent to which small departures 
from chemical neutrality at the ( N -  1) sites adjacent to the central trap 
wipe out distinctions due to the geometry of and constraints on the reaction 
space of the reaction-diffusion process being considered. The process 
simply becomes chemically controlled (rather than diffusion controlled) 
once the ( N -  1) centers are "turned on." 

The qualitative conclusions stated above remain unchanged when one 
examines the results of similar calculations performed for d = 3. Rather 
than present these here, however, we report the results of a different series 
of calculations in d = 3 which have relevance to the problem of morpho- 
gensis. The notion of "reduction of dimensionality" as introduced by Adam 
and Delbrfick (7) is the conjecture that living systems handle problems of 
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timing and efficiency of reaction by converting d-dimensional flows, where 
possible, to ( d -  1)-dimensional flows. This idea was explored within the 
framework of a continuum diffusion model in Ref. 7, and within the 
framework of discretized systems in Ref. 8. Use of the algorithm allows one 
to study the interplay between system size and the advantages gained upon 
converting from a d dimensional process to one governed by the "tracking" 
boundary condition (by which one means that the diffusing species-moves 
randomly in a space of d-dimensions until it encounters the boundary for 
the first time, after which its trajectory is restricted entirely to the lower 
dimensional boundary of the host lattice). Calculations on lattices of size 
5 • 5 • 5 show that a centrosymmetric site for the deep trap is more 
efficient in trapping the walker than considering any surface site and 
imposing the tracking condition. However, when one studies the 8 • 8 • 8 
lattice, (9) three-dimensional walks to a centrally located site (5, 5, 5) ((n) 
= 693.6) while considerably shorter than three-dimensional walks to a 
corner site (1, 1, 1) ( ( n ) =  1844.9) or to a surface site (5,5, 1) ( ( n ) =  
2001.0), nonetheless are longer than a "tracking" walk to a surface site 
(5,5, 1) ( ( n ) =  632.9). Thus, as regards the efficiency of the underlying 
reaction-diffusion process, there occurs a crossover in the optimal location 
of the "active site," and this "phase transition" in reaction space appears to 
be a remarkably strong function of the size of the system. This conclusion is 
also borne out and further substantiated when one considers surfaces of 
fractal dimensions. (s) 

The algorithm can also be applied to deal with situations in which the 
motion of the migrating particle is biased by an interaction potential. 
Adopting the notation introduced in the preceding section, we consider a 
13-site chain subject to periodic boundary conditions with a centrosym- 
metric deep trap and regard the probabilitypo of moving from site i to sitej 
to be governed by a (normalized) potential function of the form p~j 
= r i f 6 / ~ , j r i j 6 ;  we determine: @)1 = 11.8, @)2=21.3, (n)3 =28.8, (n)4 
= 34.5, @)5 = 38.2, (n)6 = 40.1, and (n)  = 29.1. These numbers are to be 
contrasted with the ones obtained assuming all the p~j = 1/2 viz., @)1 = 
12.0, @)2 = 22.0, (n)3 = 30.0, (n)4 = 36.0, (n)5 = 40.0, (n)6 = 42.0, and 
(n)  = 30.3. Comparison shows at once that the governing potential as- 
sumes more and more significance in guiding the motion of the walker the 
farther the site considered is displaced from the central trap. 

To study competitive chemical processes, it is instructive to perform 
the above calculation for two reactants, mutually diffusing to a localized 
reactive site. To date, the algorithm has been applied to this problem only 
for the case of purely repulsive interactions between walkers. In particular, 
we imagine one walker to be characterized by a mass and size so much 
greater than the second diffusing species that the lighter particle is simply 
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denied access to a site of the lattice on which the migrating heavy particle 
happens to have landed. As representative of the sorts of results one finds 
in d = 2, 3, for a 5 • 5 lattice the expected walk length for the lighter 
particle is ( n ) =  31.3 whereas for a 5 • 5 • 5 lattice the walk length is 
(n )  = 157.3. The corresponding results obtained for the case of a single 
random walker are, respectively, ( n ) =  31.7 and ( n ) =  157.3 indicating 
that the "blocking" effect of the heavy particle diminishes rapidly in 
significance with increase in size of the reaction space accessible to the 
lighter reactant. 

4. C O N C L U D I N G  R E M A R K S  

Despite the simplicity of the analysis reported in Section 2 (focusing as 
it does on the one-dimensional problem), it is nonetheless of interest to 
point out that information embedded in the inverse transformation matrix 
A -1 can cast light on a problem of contemporary importance in the theory 
of one-dimensional noninvertible maps. For example, with respect to the 
logistic parabola, x,+ 1 = bx,( l -  xn) [with 0 < xn < 1 and b = 4 a  with 
0 ~< a < 1], "for values of b where numerically generated sequences appear 
to be chaotic, it is not, at present, known whether they are truly chaotic, or 
whether, in fact, they are really periodic, but with exceeding large periods 
and very long transients required to settle down". ~ t0~ To address this 
question, we adopted the hypothesis that if the logistic parabola were 
generating truly random sequences, such a map should comprise the 
"perfect" random number generator. Given this hypothesis, values of (n)i  
and (n)  computed for a linear chain subject to periodic/reflecting bound- 
ary conditions using the logistic parabola as the "seed" for a Monte Carlo 
simulation should produce values exactly the same as those generated via 
the algorithm. Accordingly, we computed (n)i and (n )  for values of a in 
the range, a c < a < 1, where a c is the Feigenbaum number (0.892486417), 
and discovered ~ 11~ that only the value a = 1 gave results in accord with the 
exact statistical-mechanical results laid down in Section 2. This result seems 
to be in agreement with the conclusion of Thomae and Grossmann ~ 12) but 
stands in contrast to the work of Lorenz, (1~ whose numerical studies 
indicate that at least some of the numerically generated sequences in the 
range ac < a < 1 are truly chaotic. 

Finally, with respect to the calculations reported in Section 3, we are 
presently attempting to mobilize the algorithm to develop a lattice theory of 
chemical reactivity. The lines along which such a theory is being developed 
may be illustrated by considering a particular example, the bromination of 
toluene. Taking advantage of the (near) hexagonal symmetry of the toluene 
molecule, we imbedded this structure in a triangular (the dual) lattice of 
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N = 126 sites; altogether seven of the 126 sites will be blocked (six to 
accommodate the hexagonal structure of the benzene ring and one site for 
the methyl group). The electron donating character of the methyl group 
affects the electron density at ortho, meta, and para positions of the ring 
differently and phenomenological ( 13~ or quantum chemical ( 14)' data may be 
used to assign the (relative) trap depth (the si) for each distinct site. Using 
the algorithm one can compute the expected walk length (n)i of the 
bromine ion from each of the 119 surrounding lattice sites to the ortho, 
meta, and para positions of the chemical lattice. When these data are 
converted to predicted percentage of product ( ~  1 / (n ) i  + ~ . i l / ( n ) i  X 
100), we find: % ortho = 46.6, % meta = 0.3, and % para = 52.8, estimates 
which may be compared with the experimentally determined values of 32.9, 
0.3, and 66.8, respectively. 
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